利用NDVI-Ts方法大尺度反演盐碱地土壤湿度的误差分析——以农田、草地为例

Analysis of Large-scale Soil Moisture Retrieval Error in Saline-alkali Soil Based on NDVI-Ts Space——Taking Farmland and Grassland as Cases

  • 摘要: 土地盐碱化导致大面积土地资源的丧失,威胁生态的可持续发展,严重破坏了我们赖以生存的环境,因此用遥感手段监测土壤盐碱化有很大的现实意义。地面受不同的植被所覆盖,特别是在大尺度下植被类型纷繁复杂,利用遥感数据通过传统的NDVI-Ts特征空间来反演大尺度下土壤湿度时往往会增大反演误差。本文使用landsat8数据,考虑到不同植被对NDVI-Ts特征空间的影响,分别建立了农田和草地覆盖下的特征空间,并结合地面实际测量的土壤湿度数据,分析干旱植被指数(TVDI)与实际土壤含水量的相关性,并以此来反映传统NDVI-Ts特征空间引起的在大尺度反演土壤湿度的误差。结果发现:整体区域为0.16,农田为0.22,草地为0.35;并分别通过了0.01、0.1、0.05水平的显著性检验。从以上的结论我们可以得到:在利用TVDI反演大尺度土壤湿度时,不能将所有的植被类型一起作为NDVI-Ts特征空间来计算TVDI,不同的植被类型需要分开以提高土壤湿度反演的精度。

     

    Abstract: The soil salinization results in the loss of a large area of land resources, and is a direct threat to the ecological sustainable development, and also damages to the natural environment for human survival seriously. So it has a very important practical significance to use remote sensing technology in soil salinization monitoring. Ground is covered by different vegetation, so the retrieval of soil moisture of traditional NDVI-Ts space increases the error especially in large-scale. In this paper, taking corn farmland and grassland of saline as cases, firstly make use of landsat8 data for the retrieval of the land surface temperature Ts (Land surface temperature) by split window algorithm combined with the ground test station meteorological data. And then establish the NDVI (Normalized Difference Vegetation Index)-Ts feature space under two types of land use. Use the NDVI-Ts space to calculate the TVDI (Temperature Vegetation Dryness Index). Combined with the actual measured surface soil moisture data to calculate the correlation coefficients between actual soil moisture and TVDI:the whole area is 0.16, farmland is 0.22, grassland is 0.35;and the correlation coefficients got through the 0.01, 0.1, 0.05 significance level respectively. Lastly analyze the soil moisture retrieval error by different NDVI-Ts feature space. From the above conclusion:Separating different types of land use increase the soil moisture retrieval accuracy.

     

/

返回文章
返回